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What is LLM Unlearning? 

Research Question: How can we efficiently and effectively eliminate 

the influence of specific ‘unlearning targets’ and remove associated 

model capabilities while preserving model performance for non-targets? 

[Liu et al,. 2024]

Liu, Sijia, et al. "Rethinking machine unlearning for large language models." arXiv preprint arXiv:2402.08787 (2024).



Why do we need LLM Unlearning

Liu, Sijia, et al. "Rethinking machine unlearning for large language models." arXiv preprint arXiv:2402.08787 (2024).



How to Evaluate LLM Unlearning? 

MU is a generic framework for "updating" models to comply 

with "data manipulation” requests, which draws the connection 

between data influence and model influence
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How to fulfill LLM Unlearning? 

MU is a generic framework for "updating" models to comply 

with "data manipulation” requests, which draws the connection 

between data influence and model influence

General Problem Formulation

Previous Focuses: 
➢ How to design 𝐿𝑓 , 𝐿𝑟  [Yao et al., 2023; Eldan& Russinovich, 2023]

➢ Input-based Methods [Pawelczyk et al., 2023; Thaker et al., 2024; Liu et al., 2024]

min𝜽 𝐿𝑓 𝜽; 𝒟𝑓 + 𝛾𝐿𝑟(𝜽; 𝒟𝑟)

Forget Retain

Yao Y, Xu X, Liu Y. Large language model unlearning. arXiv preprint arXiv:2310.10683, 2023.

Eldan R, Russinovich M. Who‘s Harry Potter? Approximate Unlearning in LLMs. arXiv preprint arXiv:2310.02238, 2023.

Pawelczyk M, Neel S, Lakkaraju H. In-context unlearning: Language models as few shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

Thaker P, Maurya Y, Smith V. Guardrail baselines for unlearning in llms. arXiv preprint arXiv:2403.03329, 2024.

Liu C Y, Wang Y, Flanigan J, et al. Large Language Model Unlearning via Embedding-Corrupted Prompts. arXiv preprint arXiv:2406.07933, 2024.
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What is missing?



Revisit Influence Unlearning

MU is a generic framework for "updating" models to comply 

with "data manipulation” requests, which draws the connection 

between data influence and model influence

• Weighted training problem:

• Parameter updates when deleting data from dataset:

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

• Influence unlearning:

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning
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between data influence and model influence

• Weighted training problem:

• Parameter updates when deleting data from dataset:

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

• Influence unlearning:

Newton methods

Similar!

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

Whether we can integrate second-order optimization into influence unlearning, 

thereby transforming the latter into an effective iterative unlearning approach.



What is a suitable second-order optimizer for LLMs

MU is a generic framework for "updating" models to comply 

with "data manipulation” requests, which draws the connection 

between data influence and model influence

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

• Challenges for applying second-order optimizer on LLMs 

➢ Time cost: computing or approximating hessian information is time costly.

➢ Memory: maintaining hessian information is also memory costly.

• Sophia: Second-order Clipped Stochastic Optimization [Liu et al., 2023a]

𝒉𝑡 denotes EMA of the Hessian diagonal estimates obtained 

from the diagonal of the Gauss-Newton matrix

Liu, Hong, et al. "Sophia: A scalable stochastic second-order optimizer for language model pre-training." arXiv 

preprint arXiv:2305.14342 (2023).



Second-order Optimizer can enhance LLM Unlearning

MU is a generic framework for "updating" models to comply 

with "data manipulation” requests, which draws the connection 

between data influence and model influence

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

Our goal: Develops a theoretically-groundedd broadly-applicable method 

to close the performance gap

• TOFU benchmark

SOUL-based methods consistently outperform their FO counterparts 

(FO-GradDiff vs.SO-GradDiff, FO-PO vs. SO-PO, and FO-NPO vs. SO-

NPO) in the efficacy measurements of LLM unlearning.



Iterative unlearning benefits from SOUL

Limitation: There exists a significant performance gap between exact 

unlearning and approximate unlearning

➢ Both GA and GradDiff exhibit slower 

unlearning convergence compared to 

SOUL

➢ GradDiff is better at preserving retain 

accuracy, still falls short in unlearning 

performance

➢ SOUL quickly achieves better forget 

performance and adaptively adjusts 

retaining performance



Time and Memory Analysis?

• SOUL is computationally efficient! 

➢ SOUL has similar computational time with 

AdamW. Due to efficient approximation 

for hessian information.

➢ SOUL has similar memory cost 

compared with AdamW.  

1. SOUL (2*N) : EMA of gradient, EMA of diagonal information of 

Hessian

2. AdamW (2*N) : first moment, second moment



Summary

• What is LLM unlearning?

• From influence unlearning to second-order optimizer.

• Second-order optimizer can help enhance LLM unlearning performance.

• Sophia-based second order LLM unlearning (SOUL) is computationally 

efficient 
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